Genetic fingerprint
The sudden swine flu scare meant that health organisations across the world needed a fast response, and less than two months after the first reports of an unusual flu-like virus, scientists at the UK’s Health Protection Agency (HPA) produced the first genetic fingerprint of the virus. Dr Monica Galiano, clinical virologist at the HPA says, ‘We have been able to sequence the first complete genomes of the recently emerged influenza H1N1 swine-lineage, including the strain that is being used by the National Institute for Biological Standards and Control to work on the vaccine.’ Galiano explains that, ‘the entire genetic information of an influenza virus is contained in eight genes, “chains” of nucleic acid or RNA which are composed of consecutive molecules called nucleotides. The sequencing process can “read” these chains in order to know the nucleotide sequence.’ 
 
Mutations
The problem with influenza is that it can mutate quickly and combine with other influenza viruses. ‘The genome sequencing enables us to see and track these changes’, explains Dr Galiano. ‘Researchers have unravelled many of these changes or mutations and they know what can be expected from a virus which exhibits some specific mutations: some tell us that the virus may be resistant to antiviral drugs; other changes are linked to the ability of the virus to infect either birds or humans; some changes seem to help the virus to transmit better between humans; other changes might enable the virus to spread beyond the lungs and infect other organs like brain, intestine or liver, causing a more severe infection and even death.’ 
 
Collaborative project
While a fast response is essential to halting the spread of a virus, the science can be time consuming and, until recently, quite expensive. However, as Galiano explains, new sequencing technologies have enabled many more researchers to study the complete genomes of hundreds of viruses and ‘we are working in a collaborative project funded by the Wellcome Trust to establish an influenza virus sequencing 'pipeline' to sequence large numbers of viral genomes.’ At the moment it appears that all the UK viruses are related, so a vaccine produced from one of these can be effective. ‘However,’ says Dr Galiano, ‘it will be crucial that we keep gathering as much genetic information as possible, in order to track possible changes whilst the virus evolves in humans, and to understand how these changes happen.’

更多资讯请浏览
 

基因指纹
突如其来的猪流感恐慌令全世界的卫生组织都必须做出及时反应。在第一例N1H1病毒发现后的两个月之内,英国卫生保护局(HPA)的科学家制作出了这种病毒的第一个基因指纹。HPA的临床病毒学家莫妮卡•加利亚诺说:“我们已经完成了最新出现的H1N1流感病毒第一个完整基因组的测序工作,包括英国国家生物学标准和管制所正在利用研制疫苗的品系。一个流感病毒的所有基因信息包括在八个基因当中。这些基因是由核酸组成的链条。每个核酸都由连续的核苷酸分子组成。基因测序工作就是‘解读’这些链条,从而了解其中核苷酸的顺序。”

突变
流感病毒的问题在于它能够很快的发生突变并与其他的流感病毒结合。“基因组测序能够使我们了解并跟踪这些变化,”加利亚诺博士解释说。“研究人员已经发现了很多变化或变异。通过一种病毒所表现出来的变异,科学家可以预知这种病毒的特性:一些变异能使病毒对抗病毒药有免疫作用;一些变异能使其在人和鸟类中间传播;另一些变异能够使病毒人类中的传播速度加快;还有一些变异能够使病毒感染肺部之外的器官,像大脑、肠道或肝脏等,引起更严重的感染,甚至死亡。”
 
合作项目
快速的反应是防治一种病毒所必不可少的,但是针对这种病毒的研究过程却漫长又昂贵。加利亚诺博士说,新的基因组测序技术能够使更多的研究人员参与到上百种完整病毒基因组的研究之中。“我们正在进行一个由维康基金资助的合作项目。这个项目的目标是建立流感病毒测序的流水线,从而实现大规模的病毒基因组测序。”到目前为止,英国的所有流感病毒都是相互联系的,因此针对其中一种的疫苗对其他病毒也会有效。加利亚诺博士说:“关键在于我们能够不断的收集更多的基因信息,从而能够跟踪病毒在人体中产生的各种变化,并了解这些变化产生的原因。”

 

 

该内容来源于英国总领事馆文化教育处